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Abstract

In the past, roughness effects were included in models by using various friction laws. In contrast, this study deals with

simple Poisson impact and Coulomb friction laws on multiple concurrent contacts between geometrically random rough

surfaces and their effect on the slider’s roughness-induced vibrations.

The closed-form solutions derived here relate roughness-induced vibrations to the surface roughness, slider mass, slider

load, slider dimensions, relative sliding speed, and the coefficient of restitution. Wear influences were studied by simulating

random rough surfaces with multiple concurrent contacts.

Contrary to expectations we found that random roughness can induce slider vibrations of distinct frequencies. We found

a good agreement between the results of the studied models and the experiments.

The closed-form solution was found to be suitable for estimating the roughness-induced vibration frequencies of a hard-

disk drive’s writing/reading head and those of a car-brake’s pad (known as squeal-noise).

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Sliding contacts with friction can induce vibrations via mechanisms of stick–slip, variable dynamic-friction
coefficient, sprag-slip, and coupling mechanisms [1–5]. Using a simplified model of orthogonal cutting, Grabec
[6] showed that besides limit-cycle vibrations, dry friction can produce chaotic motions. Popp and Stelter [7],
Ibrahim [5], and others overviewed stick–slip vibrations and chaos.

Impacts are sources of self-sustained oscillations or chaotic motion. Whiston [8] investigated the steady-state
response of a single-degree-of-freedom (dof) oscillator under harmonic excitation. Shaw and Holmes [9] showed
that even a single-dof impact oscillator can produce harmonic, subharmonic and chaotic motions. Impact
oscillators have been studied for governing equations [10,11], for relatively simple mechanical models [12] and for
real-life applications (e.g., gear rattle by Pfeiffer and Kunert [13]). Bishop [14] overviews impacting oscillators.

Contact models between rigid bodies for dry-friction only, impacts only, or dry-friction and impacts usually
involve point contacts, for tractable solutions. Consequently, parametric studies give undue emphasis to
different friction laws, the number of degrees of freedom [15,16], vibro-isolation, and harmonic excitations,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.06.036
mailto:janko.slavic@fs.uni-lj.si


ARTICLE IN PRESS

Nomenclature

Indices

C end of compression phase or compres-
sion phase

E end of expansion phase or expansion
phase

S start of compression phase
n normal direction
t tangential direction

Variables

F slider load
f b frequency of bouncing
f c closed-form frequency of bouncing with

rocking
f m measured frequency
_g relative sliding speed
h height of bouncing
h vector of active forces
I total impulse (compressionþexpansion)
J slider mass moment of inertia
K � influence of � on vibrations
Klr influence of slider shape on vibrations
kl ratio of slider height l to width w

kr ratio of contact distance r to slider
width w

l slider height
M mass matrix
m slider mass
p number of concurrent contacts
q generalized coordinates
r contact point distance
T time between two impacts
T sim simulated time
u wear of surface height
vv vertical velocity
vs horizontal velocity
W i loss of mechanical energy at contact

point i

W constraint matrix of contacts
w slider width
wg counter surface width
w constraint vector of contact
X Fourier transform of x

x translational degree of freedom
a change of slope between asperities
x angle sawtooth slope
� coefficient of restitution
m coefficient of friction
F Fourier transform of j
j rotational degree of freedom
sa standard deviation of angle a
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among others, while overlooking other influences. By applying different variations of Coulomb’s friction law,
stick–slip phenomena can be studied [17]. Via an acceleration-dependent friction-law, McMillan [18] found
that the initial conditions are important in stick–slip phenomena. Vielsack [19] studied four different friction
laws and found that the stick–slip during deceleration depends on the properties of the mechanical system,
especially the drive, and less on the characteristics of the frictional force. Ogilvy [20] and later Bengisu and
Akay [21] studied the relation between dry friction and surface roughness. Ono and Iida [22] used a single-dof,
single-contact model for a statistical analysis of random roughness on vibration amplitudes. Roughness effects
on impact properties were studied by Chang and Ling [23]. In addition, the coupling of normal and tangential
vibrations can lead to stick–slip phenomena [24,25]. Parametric resonances analyzed by Mottershead et al. [26]
can also lead to increased vibrations.

This article studies the influence of random roughness and run-in wear on slider vibrations. The results for
theoretical and experimental investigation are presented. The slider dynamics was analyzed with simple closed-
form analytical models and more complex numerical models. In Section 2, a simple steady-state bouncing
model involving a single contact is developed. Section 3 develops a two-contact steady-state bouncing-with-
rocking model, which includes surface roughness, slider mass, slider load, slider dimensions, relative sliding
speed, and the coefficient of restitution. Section 4 introduces numerical models with one and two contacts and
progresses to a multiple-contact model between rough surfaces. Run-in wear is also presented. A comparison
and discussion of analytical and numerical models are given in Section 5. Section 6 presents experiments to
verify the models and also compares the results to published experiments on hard-disk drives and brakes.
Section 7 presents a summary with conclusions.
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2. Steady-state bouncing

Paddle juggling, i.e., repeatedly hitting a ball attached by an elastic cord to a paddle, exhibits steady-state
bouncing. By hitting the ball vertically with a flat horizontal paddle, the ball is kept in the air. The ball exhibits
periodic motion, motion that stays on a strange attractor, and chaotic motion dependent on the frequency and
amplitude of the oscillation of the paddle [27–29]. Wood and Byrne [27] studied the bouncing of a ball on a
randomly vibrating surface. The variation of the oscillating horizontal paddle, with a constant downward
force F acting on the ball, is shown in Fig. 1a. During contact the sawtooth-shaped counter-surface—moving
horizontally with velocity vs—impacts and applies the vertical velocity

vv ¼ vs tan x (1)

to the ball of mass m, where x is the sawtooth slope, see Fig. 1b. By neglecting the effects on the dynamics of
the ball’s radius, sawtooth height, and assuming that the counter surface mass is infinite, the simplified model
in Fig. 1c applies. Here, the rigid ball always touches the rigid sawtooth at the same height with a vertical
velocity vv.

For rigid bodies Poisson’s law for elastic collision solves the impacts as a compression phase with
diminishing relative normal velocities, followed by an expansion phase [30]. With Poisson’s law, the
expansion-phase impulse IE ¼ �IC , where IC is the compression impulse. The total impulse I ¼ IC þ IE , the
time integral of force, is usually related to the momentum difference before and after an impact. The
coefficient of restitution, �, is in the range [0,1], where 0 denotes plastic and 1 perfectly elastic impacts.
Common assumptions for impact include a short duration for the impacts, unchanged positions of the bodies,
and negligible non-impulsive forces (moderate forces of long duration).

The subscripts S, C, and E denote the start of compression, the end of the compression, and the end of the
expansion phase, respectively. For example, _xS and _xE denote the velocities at the start of the compression and
the end of the expansion, respectively. The expansion phase starts at C, the end of the compression.

The compression impulse IC ¼ mðvv � _xSÞ is followed by the expansion impulse IE ¼ �IC :

I ¼ IC þ IE ¼ mðvv � _xSÞ þ �ðmðvv � _xSÞÞ. (2)

Relating the impulse I to the momentum difference between the start and the finish, m _xE �m _xS, of an impact
gives

_xE ¼ �� _xS þ vvð1þ �Þ, (3)

where _xS is the pre-impact velocity. We are interested in sustained period-one motion, which means that the
ball must always touch the sawtooth surface at the same height, h, and obey the condition _xE ¼ � _xS. The
displacement x and the velocity _x versus time for a sustainable periodic motion are plotted in Fig. 1d, which is
a result of solving Newton’s law m €x ¼ �F between impacts, with the initial conditions xð0Þ ¼ 0 and
_xð0Þ ¼ _xE . Combining _xE ¼ � _xS and Eq. (3) gives

_xE ¼ vvK�1� , (4)

where

K � ¼
1� �

1þ �
(5)
Fig. 1. 1-dof Ball bouncing against sawtooth surface: (a) model, (b) vertical velocity, (c) impact model, (d) steady-state bouncing.
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monotonically decreases from 1 to 0 for a coefficient of restitution, �, between 0 and 1, respectively. The
impulse on the ball during the collision is

I ¼ IC þ IE ¼ 2 _xEm. (6)

From the conservation of kinetic and potential energies between any two impacts, the height of the bounce
(see Fig. 1d) is

h ¼
m _x2

E

2F
. (7)

A constant force F applied over a period T renders the total impulse I ¼ FT . From the conservation of linear
momentum, the frequency f b and the period T of the periodic bouncing are

f b ¼
1

T
¼

F

I
¼

F

2mvv

K �. (8)
3. Steady-state bouncing-with-rocking of a slider

Fig. 2 depicts a two-degrees-of-freedom rigid slider, free to translate in the vertical x direction and rotate
about the angle j. The slider has width w, length l, mass m, and so the mass moment of inertia
J ¼ mðw2 þ l2Þ=12. The right ðRÞ and left ðLÞ contact points between the slider and the counter surface are
defined by the distance r from the centre of mass of the slider, and the value of j at the impact. It is assumed
that there is no friction between the slider and the counter surface. Although the counter surface is not moving
vertically at the moment of impact, the counter surface is assumed to apply a vertical velocity vv to the slider
via a roughness-effect coupling similar to the sawtooth surface of Fig. 1.

With a constant vertical force, F, applied to the centre of mass of the slider, the equations of motion during
the non-contact state are:

m €x ¼ �F , (9)

J €j ¼ 0. (10)

Assuming a slider that is symmetrical about its centre of mass, the response needs to be analyzed at only one
contact point (e.g., the left). As in the ball bouncing of Section 2, Poisson’s law governs the bouncing with
rocking, and S, C, and E denote the start of the compression, the end of the compression, and the end of the
expansion. In Fig. 2, In ¼ InC þ InE and I t ¼ I tC þ I tE denote the total impact impulse on the slider, as the
sum of the compression and the expansion impulses. The subscripts n and t refer to the normal and tangential
directions.
Fig. 2. 2-dof Model with Left and Right contact points.
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J. Slavič et al. / Journal of Sound and Vibration 306 (2007) 732–750736
3.1. Compression phase

Without friction, only the normal compression impulse InC is active (see In in Fig. 2). With Poisson’s law the
non-impact forces are assumed to be negligible. The conservation of momentum for the bouncing slider gives

InC cosjC ¼ m _xC �m _xS, ð11Þ

� r InC ¼ J _jC � J _jS, ð12Þ

where the slider velocities at the start and the end of the compression phase are _xS, _jS and _xC , _jC ,
respectively. To determine the normal compression impulse, InC , as a function of the velocities at S, eliminate
the velocities at C using the condition that at the end of the compression the relative normal velocity is zero.
The relative velocity vector between the bodies at the end of the compression (in the coordinate system x� y,
Fig. 2) is

_rC ¼ _rCA
� _rCB

¼

_xC � r _jC cosjC þ l=2 _jC sinjC � vv

�r _jC sinjC � l=2 _jC cosjCÞ
T

 !
, ð13Þ

where A and B denote the slider and the counter surface and T denotes the matrix transpose. In the n� t

coordinate system, shown at the bottom of the slider in Fig. 2, the relative normal velocity

_gnC ¼ nTC � _rC ¼ �vv cosjC þ _xC cosjC � r _jC ¼ 0 (14)

at the end of the compression must vanish, where the unit normal vector nC ¼ ðcosjC ; sinjCÞ
T.

The normal compression-impulse, InC , is found by eliminating _xC and _jC from Eqs. (11), (12), and (14),
giving

InC ¼ �
Jm _gnS

mr2 þ J cos2 jS

, (15)

where

_gnS ¼ nTA;S_rS ¼ �vv cosjS þ _xS cosjS � r _jS. (16)

Eqs. (15) and (16) assume jS ¼ jC , consistent with Poisson’s law’s assumptions about the short time of the
impact (which allows the displacements to be considered as constant).

3.2. Expansion phase

The expansion-phase impulse InE ¼ �InC follows the compression phase. The total impulse during the
impact I ¼ InC þ InE ¼ ð1þ �ÞInC .

3.3. Steady-state response

Similar to Eqs. (11) and (12), the conservation of linear and angular momentum during the overall impact
(compression plus expansion) gives

ð1þ �ÞInC cosjC ¼ m _xE �m _xS, (17)

�rð1þ �ÞInC ¼ J _jE � J _jS. (18)

From the motion equation (9), the conservation of linear momentum between the left ðLÞ and right ðRÞ
impacts gives

m _xL
E � FT ¼ m _xR

S , (19)

where T is the period between the L and R impacts and F is a constant. The subscripts in Eq. (19) indicate at
which instant during the impact the velocity was evaluated. A constant angular momentum between the L and



ARTICLE IN PRESS
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R impacts (no external moments on the slider between the impacts) and jL
E ¼ jR

E ¼ jE give

_jET þ 2jE ¼ 0. (20)

For a sustainable steady-state bouncing, the one-contact model condition _xE ¼ � _xS is enhanced with the
rocking condition _jE ¼ � _jS. Substituting these conditions into Eqs. (17) to (20), enforcing Poisson’s
constant-displacement assumption during impact, and eliminating T, _xE , and _jE gives

F ð�� 1Þ2jE ¼
Jm2rv2vð�þ 1Þ2 cos3ðjEÞ

ðmr2 þ J cos2ðjEÞÞ
2

. (21)

Using a small-angle approximation, cosjE � 1, with J ¼ mðw2 þ l2Þ=12 and the normalizations kr ¼ r=w, and
kl ¼ l=w, Eq. (21) leads to

jE ¼
12mv2v

Fw

kr

1þ k2
l

K2. (22)

In the foregoing K ¼ �K�1lr K�1� , where K � is given by Eq. (5) and

K�1lr ¼
1þ k2

l

1þ k2
l þ 12k2

r

. (23)

From Eqs. (17) to (20) with a small-angle approximation the velocities after impact are

_xE ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
FJjE

m2r

r
¼ vvjK j, (24)

_jE ¼ �
FjE

m _xE

¼ �
12vv

w

kr

1þ k2
l

jK j. (25)

The frequency of the bouncing-with-rocking from Eq. (19) and _xE ¼ � _xS is

f ¼
1

T
¼

F

2m _xE

¼
F

2mvvjK j
. (26)

When r diminishes or l becomes large, Klr ! 1, Eq. (23) gives K !�K�1� . A limiting situation resulting in
pure bouncing similar to Eq. (8) occurs with the frequency

f b ¼ lim
kr!0

f ¼ lim
kl!1

f ¼
F

2mvv

K �. (27)

Using Eq. (27) the frequency of the bouncing-with-rocking is

f c ¼ f bKlr. (28)

The parameter Klr describes how the bouncing-with-rocking oscillations differ from pure bouncing
oscillations. Depending on the relative dimensions kl and kr, Klr ranges from 1 to 4. Eq. (28), however,
suggests higher frequencies for bouncing with rocking, and this result is independent of the slider width, w.
4. Bouncing-with-rocking numerical simulations

The bouncing model depicted in Fig. 2 uses an idealized impact condition to estimate the vertical velocity vv

applied to the slider at the contact. If the sawtooth model is used instead, the symmetry between left and right
is disturbed, and a closed-form solution is likely to be intractable. In this section a two-contact non-
symmetrical numerical model with a sawtooth-shaped counter surface having the sawtooth angle x will be
presented.
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4.1. Multibody dynamics formulation

For the bouncing contact of Fig. 3, because of the sawtooth-shaped surface, the locus of the contact points
cannot be specified a priori. The numerical methods used in this article, common in the field of multibody
dynamics, have been tested and verified on classical problems [31–33].

The equations of motion in matrix form are

M€q� h ¼ 0, (29)

with the generalized coordinates q ¼ ðx;jÞT, the generalized active forces h ¼ ð�F ; 0ÞT, and the mass matrix

M ¼
m 0

0 J

� �
. (30)

4.1.1. Compression phase

Similar to Eqs. (11) and (12), the conservation of momentum during the compression for p concurrent
contacts gives

Mð_qC � _qSÞ � ðWn WtÞ
InC

ItC

 !
¼ 0. (31)

Here, the vectors InC and ItC of dimension p are compression impulses (in the normal and tangential
directions), and the constraint matrix ðWn WtÞ transforms from the local n� t coordinates to the generalized
space. For the normal direction, the sub-matrix is

Wn ¼ fwn;1;wn;2; . . . ;wn;pg, (32)

where

wn;i ¼
q_rC;i

q_q

� �T

� ni. (33)

The relative contact velocity vector, _rC , is defined in a similar way to Eq. (13), but the individual components
correspond to the contact point i. The tangential constraint matrix Wt is defined similarly, but with the
tangential vector ti.

Like with Eq. (14), the vector of the relative contact velocities in the local normal-tangent coordinate system
is

_gC ¼ ðWn WtÞ ð_qC � _qSÞ þ _gS, (34)

where S and C denote the start and the end of the compression phase.
The motion Eq. (31) cannot be solved immediately, because neither the compression impulses ðInC ItCÞ

T nor
the change of velocities during the compression ð_qC � _qSÞ are known. For the single contact of Section 3, the
Fig. 3. 2-dof Model with two possible contact points and a counter surface with a sawtooth profile.
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relative normal velocity during the compression can only diminish. In multiple concurrent contacts,
interaction between the impulses can cause the relative normal velocities at some points to diminish, and at
others to increase.

Physical consistency is ensured by applying complementarity conditions [34,35]. One complementarity
condition is found for each contact in its normal direction. At the end of the compression, either the normal
velocity is zero and the compression impulse is positive, or the normal velocity is positive and the compression
impulse is zero, i.e., _gnC;iX0, InC;iX0, and _gnC;i � InC;i ¼ 0. The Coulomb friction limits the tangential
compression impulse to m � InC;i, if the relative velocity is non-zero at the end of the compression phase. Here,
m is the friction coefficient. The relative velocity is zero, if the tangential impulse is smaller than m � InC;i. The
complementarity conditions must comply with j _gtC;ijX0, m InC;i � jI tC;ijX0, and j _gtC;ij � ðmInC;i � jI tC;ijÞ ¼ 0.
Using the normal and tangential complementarity conditions, Eq. (31) is rewritten in the linear
complementarity problem (LCP) form

y ¼ Axþ b, (35)

yX0; xX0; yTx ¼ 0. (36)

Pfeiffer and Glocker’s [35] straightforward formulation of the compression phase as an LCP has A and b

known from the mass matrix, the active forces, and the contact kinematics. Complementary x and y,
representing the unknown relative velocities and compression impulses, are normally found using Lemke’s
algorithm [36].

4.1.2. Expansion phase

The conservation of momentum during the expansion phase gives

Mð_qE � _qCÞ � ðWn WtÞ
InE

ItE

 !
¼ 0. (37)

The expansion impulse is the compression impulse multiplied by the coefficient of restitution. Interactions
between multiple concurrent contacts can lead to physical inconsistency. An impulse at one contact point
could force an interpenetration of surfaces at another contact point. To avoid this inconsistency,
complementarity conditions must be introduced, and the expansion phase solved as an LCP [35].

Until impact, the motion equation (29) is integrated using the Runge–Kutta fourth-order method. During
impacts, two LCPs are solved: the LCP for the compression phase, followed by the LCP for the expansion
phase.

4.2. Numerical example: 1-contact model

For the comparison and verification we numerically simulated the one-contact, one-dof model of Section 2,
with the parameter values given in Table 1. The bouncing ball has a radius of 1mm. The counter-surface
geometry has a sawtooth height of 1mm and x ¼ 4�. The maximum time-step, Dt ¼ 0:1ms, was made much
shorter during the impacts to limit the interpenetration to d ¼ 0:01mm. With these values the analytical model
Table 1

Parameter values used in simulations

m ¼ 2� 10�5 kg Slider mass

w ¼ 10mm Slider width (used in 2-contact model)

kl ¼ 0:2 l to w ratio (used in 2-contact model)

kr ¼ 0:25 r to w ratio (used in 2-contact model)

vs ¼ 10m=s Sliding speed

F ¼ 2N Normal force

m ¼ 0:5 Coefficient of friction (used in 2-contact model)

�N ¼ �T ¼ � ¼ 0:5 Coefficient of restitution

x ¼ 4� Sawtooth angle
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of Section 2 gives f b ¼ 11 917:2Hz and _xE ¼ 2:09780436m=s. With _xE as the initial conditions for _xð0Þ and
xð0Þ ¼ 0m, the numerical simulations were stable with a frequency of 11 917:1756Hz and a post-impact
velocity of 2:097 8 m=s. The final (underlined) digit for the post-impact velocity alternated between 7 and 8
during the iterations. The numerical simulation results in Fig. 4 are similar to those in Fig. 1d.
4.3. Numerical example: 2-contact model

Added to the parameters of Table 1 are the normalized slider-height kl ¼ 0:2, the normalized radius of the
contact point, kr ¼ 0:25, the coefficient of friction, m ¼ 0:5, and the slider width, w ¼ 10mm. The counter-
surface geometry had a sawtooth height of 4mm with x ¼ 4�, see Fig. 3. As shown in the results, later, the
slider was bouncing several times higher than the sawtooth height. The total simulated time T sim ¼ 0:01 s. The
two-contact solution in Section 3 gave f c ¼ 20 511:4Hz with the initial conditions xð0Þ ¼ 21:4mm,
jð0Þ ¼ 8:6� 10�3 rad, _xð0Þ ¼ 1:22m=s, and _jð0Þ ¼ �351:6 rad=s. Because the left and right contacts are not
symmetrical, the numerical results in Fig. 5 quickly diverge from the symmetrical closed-form solution of
Section 3. Since the numerical simulation and the two-contact solution of Section 3 cannot be quantitatively
compared, the spectral content of the waveforms was analyzed via a numerical Fourier transform, where X ðf Þ

and _Fðf Þ denote the Fourier transforms of x and _jðtÞ, respectively. The velocities transformed more reliably
than the displacements. In Fig. 6, the magnitude plots of _X and _F have distinct peaks at approximately 10.5
and 9.0 kHz, respectively. The frequency f c ¼ 20 511:4Hz of Eq. (28) differs from these numerically generated
values, but actually represents the same periodic motion. The difference arises because the rectified sine wave
0 0.2 0.4 0.6 0.8 1

-2

2

0

40

-2

2

0

40

t [ms]

x 
[µ

m
]

x 
[m

/s
]

Fig. 4. Numerical simulation of ball bouncing.

0 0.2 0.4 0.6 0.8 1

-500

500

-10

10

-2

2

0

40

-500

500

-10

10

-2

2

0

40

t [ms]

x 
- 

l/
2

[µ
m

]
[m

/s
]

[r
ad

]
[r

ad
/s

]
�

x
10

3  ×
 �

Fig. 5. Numerical simulation results of two-contact slider on sawtooth-shaped counter surface, with Table 1 parameter values.



ARTICLE IN PRESS

0 5 10 15 20 25 30

0.

0.05

0.1

0.15

0

10

20

30

f [kHz]

|X
(f

)| 
[m

/s
]

|Φ
(f

)| 
[r

ad
/s

]

|X||Φ|

Fig. 6. Amplitude spectra j _X j-black, and j _Fj-gray.

Fig. 7. (a) 2-dof Model with rough contact surfaces. (b) exaggerated example of rough contact surfaces, � contact points.
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j sinðotÞj of the closed-form solution has its fundamental frequency at 2o [37]. The first waveform of Fig. 5, a
less than ideal rectified sine wave, has significant energy at the excitation frequency, o. Consequently, the
numerical algorithm identifies the measured frequency at

f m ¼
f c

2
, (38)

where f c is given by Eq. (28).
Increasing the friction coefficient beyond m ¼ 0:25 moves the peak of j _Fj to lower frequencies, while the

frequency at which j _X j peaks slightly increases. At m ¼ 0:5 the peaks for j _X j and j _Fj are at 11.5 and 6 kHz,
respectively. At m ¼ 1 the peaks are at 12.0 and 3.5 kHz. During moderate friction (up to m ¼ 0:25) the
numerical simulation agrees well with the closed-form solution f m for the slider mass m, the constant force F,
the coefficient of restitution �, the relative dimension kl , and the velocity of sliding vv. Regarding _X , the
agreement is also good for higher levels of friction ðm � 0:5Þ. With kl , the mass moment of inertia increases,
and the non-symmetry becomes more pronounced. For m40:5 and kl40:5, the slider becomes unstable and
can rotate.

4.4. Numerical example: multiple-contacts between surfaces with random roughness

The two-contact numerical model of Section 4.3 was extended to a slider and a counter surface, both having
random roughness with a defined peak-to-valley (a uniform peak-to-valley probability distribution was used),
see Fig. 7. The fractal roughness models, first introduced by Ling [38], common in static contact problems,
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were not considered. Here, the maximum vertical distance between any two contact points (shown as dots � in
Fig. 7b) was limited by the maximum peak-to-valley via the maximum change of slope between two points. In
accordance with the observation of Tabor [39] and Oden and Martins [2] the average change in the asperity
slope was less than 15�. The slider had a width w ¼ 10mm and a peak-to-valley of ½�1; 1�mm. The contact
shape was defined by 400 contact points, with 25mm of distance between adjacent points (in the tangential
direction, i.e., yA in Fig. 7a). The counter surface had width wg ¼ 0:22m, roughness range ½�2; 2�mm, and
10 000 contact points with 22mm between adjacent points. Fig. 8 is a typical histogram of the change of slope
between the asperities, with standard deviations sa � 0:9� and sb � 1:3�, where a and b denote the slider and
the counter surface, respectively.

A typical simulation result with the random roughness specified by Fig. 8 and the Table 1 parameter values
is similar to the results in Fig. 5. These waveforms have the features of the counterparts in Figs. 1 and 4.

The discussion of the simulation results is continued after the wear phenomena have been introduced;
however, due to the multiple concurrent contacts and the random nature of the rough surfaces, the system is
highly nonlinear and non-smooth and, therefore, a periodic solution is, in general, not expected. This
expectation results from Lorenz’s classic work [40].
4.4.1. Run-in wear

A random surface roughness has very few asperities bearing the mechanical load. In a real slider, asperities
bearing a high mechanical load deform or wear quickly, forcing other asperities to support the load. The
effects of the wear will be included using Slavič and Boltežar’s [33] surface-recession wear model. Here, the
reduction in surface height

ui ¼ uMax
W i

WMax
(39)

at each contact point, i, depends on the total loss of mechanical energy at each contacting asperity, W i,
calculated from the contact impulses, I, and the relative velocity, _g, after each cycle of duration T sim.
In Eq. (39) WMax ¼MaxiðW iÞ, and the maximum wear-particle size uMax ¼ 2 mm keeps the roughness within
the range of the initial contact shape.

This study considers the wear-in of the slider to conform to mechanical loads, see Figs. 9 and 10.
Approximately 20 cycles of sliding (each of duration T sim) achieved a steady-state contact shape, which
resulted in a more homogenous distribution of the load. Conceptually, the energy-based wear law of Eq. (39)
is consistent with Archard’s wear law ðw ¼ ðk=HÞðmFl=mÞÞ [41], which contains the work mFl of sliding a
distance l. The parameter of hardness, H, and the wear coefficient, k, are determined from experiments.
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Curve fitting an arc to the contact shapes of Fig. 9 suggests the local radius of curvature reduces from a very
large value to about 2–3m. Fig. 10, which plots the energy losses, W i, at the contact point i, suggests the edges
of the slider (io100 and i4300) are initially loaded more than average, while the middle is loaded less. After
run-in wear, the load is more homogenously distributed, which tends to maintain a steady-state contact shape.

4.4.2. Vibration frequency

Fig. 11 shows plots of the amplitude spectra of j _X j and j _Fj for the vibrations of a slider with its initial and
steady-state contact shapes similar to Fig. 9, running against a rough counter surface. Fig. 11 is the result of 30
simulations, each with a different random-roughness combination. The shading bounds the data scatter over
30 simulations with one standard deviation. The means are indicated by solid curves.

For the initial contact shape (light shading and curve), the amplitude-spectrum j _X j has a peak of 0.052m/s
at 10.3 kHz. For the steady-state shape (dark shading and curve), the peak rises to 0.065m/s at 9.6 kHz, see
Fig. 11a. Similarly, j _Fj for the initial shape has a peak magnitude of 10.5 rad/s at 6.9 kHz. For the steady-state
shape, the peak is 17.3 rad/s at 6.4 kHz, see Fig. 11b.

If a comparison is made, it is clear that the amplitude peak for j _X j increases by approximately 25% from the
initial to the steady state, and the center frequency slightly decreases. For j _Fj the peak increases by
approximately 65%, from the initial to the steady state, and the frequency is decreased slightly.
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The inclusion of wear changed the slider dynamics. Numerical simulations show that for the steady-state
contact shape, the frequency peak becomes narrower and the amplitudes are higher. The effect of narrowing
the frequency peaks is very obvious for the rotational degree of freedom j _Fj, which has a broad frequency
content for the initial shape, see Fig. 11.

Similarly, as in Section 4.3, the frequency peaks for j _Fj occurred at lower frequencies than for j _X j. With the
friction coefficient the peaks of j _Fj decreased and j _X j slightly increased.
5. Comparison and discussion of the models

In Sections 2 and 4.2, we presented closed-form and numerical single-contact, single-dof models. Both gave
bouncing motion resembling a rectified sine wave, at a frequency defined by Eq. (8). The numerical solutions
matched the closed-form solutions. Both show that steady-state bouncing is possible on a sawtooth-shaped
counter surface.

Table 2 compares the results for the bouncing frequency for j _X j, for the two-dof, two-contact closed-form
solution of Section 3, the two-contact numerical model of Section 4.3, and the rough-surface numerical models
of Section 4.4. The numerical simulations agree with the closed-form solution for most values of slider load, F,
the slider mass, m, the sliding speed, vs, the coefficient of restitution, �, the shape parameter, kl , and the
roughness, see the middle of Table 2. For certain values of the coefficient of restitution (e.g., � ¼ 0:25), the
numerical simulation gave lower (up to 20%) bouncing frequencies than the closed-form solution.

The numerical solution included friction (see the bottom of Table 2), which slightly increased the bouncing
frequency of _X for most parameter values. However, friction in combination with thick sliders ðkl40:5Þ
decreased the bouncing frequency of _X . The rocking frequency for j _Fj is usually lower than the bouncing
frequency for j _X j, and the difference increases with increasing friction.

The closed-form solution included roughness effects via the sawtooth angle x. Random surface roughness is
characterized by the standard deviation, s, of the angle between the asperities shown in Fig. 8. For x � 3s,
similar bouncing frequencies were found for the sawtooth-shaped and random-roughness counter surfaces.
6. Experiment

6.1. Experiment setup and discussion of the results

To verify the solutions generated in Sections 2–4, bouncing-slider tests were performed using the setup
shown in Fig. 12. The vertical motion was measured by an ADE MicroSense 3046 capacitance gauge system
(range 	50mm, resolution 1mm, bandwidth 40 kHz).
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Table 2

Comparison of models for parameters given in Table 1

Closed-Form (38) Numeric Numeric

Contacts between bodies 2 2 Multiple

Phenomena included F ;m; vv; �; kl F ;m; vv; �; kl ; m F ;m; vv; �; kl ;m
Roughness Idealized vert. Sawtooth Random surface

Via Velocity x With wear

_X frequency peak for m ¼ 0 (kHz)

Parameters 10.3 10.5 10.3

vv=2 or m=2 or 2F 20.5 21–22 20–22

2vv or 2m or F=2 5.1 5 5–6

kl ¼ 0:5 9.5 9 8

� ¼ 0:20 23.8 21.0 19–21

� ¼ 0:25 18.5 18.5 14

x ¼ 2� 23.8 20.0

S: ½�0:5; 0:5�mm, CS: ½�1; 1�mm 20

_X frequency peak for m ¼ 0:5 (kHz)

Parameters – 12 10.5

vv=2 or m=2 or 2F – 23 20–25

2vv or 2m or F=2 – 6 5–6

kl ¼ 0:5 – 12 7

� ¼ 0:25 – 21 13

Steady-state results are given for the rough surface model. Left column denotes which of the common parameters. S—Slider, CS—Counter

Surface.

Fig. 12. Experimental setup.
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A steel slider of mass m ¼ 2 g with low magnetic permeability ran against a rotating disk extracted from a
personal computer hard drive (Conner 3600 rev=min and Maxtor 5400 rev=min were used). The slider width
was w ¼ 10:9mm with a height, l, ratio corresponding to kl ¼ l=w ¼ 0:2. The load was applied by a 20mm�
10mm torsional spring made of thin aluminum sheet. When the spring-mass system was not in contact with
the disk, its natural frequency was approximately 40Hz; however, sliding against a surface sanded with SP600
and then polished to a mirror-like surface, initially resulted in a broad amplitude spectra, without distinct
frequency peaks. The natural frequencies of the system at rest (no sliding), measured from the slider, were not
affected by the slider load.

Sandpaper (SP) sheets of 220, 400, and 600 grit were affixed to the rotating base, to impose roughness and
accelerate run-in wear. Upon initial contact, the surface oscillations were broad-band and/or totally random
and hard to reproduce. After run-in wear re-shaped the contact surface, distinct vibrations were observed. As
in the numerical simulations of Section 4.4.4, the sliders edges wore more.
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Typical measured displacements for a slider running against SP400 at sliding speed vs ¼ 16m=s, and load
F � 0:45N are plotted versus time in Fig. 13. A Fourier transform of the waveform exhibited a clear peak at
145Hz. The measured displacement in Fig. 13 is similar to that predicted in Figs. 1, 4, and 5.

For a comparison of the experimentally measured frequency of the roughness-induced vibration with the
closed-form analytical model (38) is used

f m ¼
1

2

F

2mvs tan x
1� �

1þ �

1þ k2
l þ 12k2

r

1þ k2
l

. (40)

The analytically deduced frequency of the roughness-induced vibration involves roughness (via the sawtooth
angle, x), the slider load, F, the slider mass, m, the coefficient of restitution, �, the sliding speed vs, the slider
height-to-width ratio kl ¼ l=w, and kr ¼ r=w; however, there was no coefficient of friction. For the
experimental slider all parameters except those for � and x are known. At room temperature for metal-on-
metal impacts, the coefficient of restitution � can be estimated as 0.6–0.8. However, since during the
experiment the slider became too hot to touch (temperatures probably exceeded 60 �C) and because at the
contact spots temperatures should be much higher, the effect of temperature on the impact is expected to be
significant. As the contact-spot temperature is nearly impossible to measure we estimated that the coefficient
of restitution is small ð� 0:1Þ. Using � ¼ 0:1, with a reasonable roughness parameter of x ¼ 2�, Eq. (40) gives
f m ¼ 142Hz. By making the reasonable assumption of two parameters ð�; xÞ the analytical model gives good
results.

Eq. (40) suggests the slider load, F, increases the vibration frequency. Experimentally, this was verified for
different sliding conditions: fresh SP600, SP400, SP220, and a metal disk surface roughened with SP400,1 see
Fig. 14, where the measured frequency, f m, versus slider load, F, is shown. As predicted by Eq. (40), the
experiments showed a linear increase of the frequency with load.
1For metal-on-metal tests, slider wear-in was done by running against sandpaper, and then running the pre-worn slider against the metal

disk.



ARTICLE IN PRESS
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Furthermore, Eq. (40) suggests that the increased roughness—described by parameter x—decreases the
frequency of vibration. Experimentally, we found the amplitude spectral peaks for the smoother SP had a
wider bandwidth than the rougher SP, although the spectral peaks occurred at comparable frequencies. As
expected, the metal slider running against the SP400-roughened metal disk produced higher frequencies of
vibration than when running on sandpaper. The frequencies could differ due to the smaller asperity angles of
the metal-on-metal contact or due to the lower stiffness of the sandpaper grains fixed to the paper backing. A
wear-track pattern formed on the rotating surface. Sliding against a surface sanded with SP600 and then
polished to a mirror-like surface, initially resulted in a broad amplitude spectrum, without distinct frequency
peaks. However, after 30–50m of sliding, the mirror-like surface roughened, leading to results similar to the
disk surface roughened by sandpaper with SP400. The wear of the SP increased the frequency.

Furthermore, Eq. (40) suggests an increased sliding speed, vs, would linearly decrease the frequency of
vibration. Fig. 15 plots the measured frequency, f m, versus the sliding speed, vs, for sliding on SP400. As
predicted by the model, in the experiment, f m decreases approximately linearly with the sliding speed, vs.

The experiment showed that the thicker sliders (higher kl ¼ l=w ratio) were more unstable, and were prone
to rotate.

Occasionally, the measured displacements contained multiple harmonics associated with the spindle’s
rotation frequency. As predicted by Eq. (40), and verified by experiment, the roughness-induced vibration
frequency decreases during the acceleration of the spindle. At the same time, the frequency of the harmonics
increases. These observations clearly distinguished the roughness-induced vibrations from the harmonics.

6.2. Comparison with published experiments

By focusing on the roughness-induced vibration the models avoided the stiffness and damping
elements. Since this situation is usually not appropriate for real-life applications, Eq. (40) cannot be
applied directly. However, since the source of the vibrations is the same, a qualitative agreement can be
expected.

Best et al. [42] and later Suk et al. [43] studied the effects of disk roughness on air-bearing sliders. For
vibrations normal to the disk surface they measured an increase of the oscillating frequency as the sliding
velocities decreased. At low sliding velocities (pre-flying speed), increased roughness (i.e., the sawtooth angle
x) the increased the flying height. These observations are consistent with Eq. (40). At low sliding speeds Best et
al. found the roughness increased the oscillating frequency, but Suk et al. found the roughness to be
insignificant. According to Eq. (40), roughness should decrease the oscillating frequency.

Ono and Takahashi [44] studied the bouncing vibrations of a slider on a wavy disk surface. A single-dof
elastic-contact model gave results almost the same as a single-dof collision-contact model. Ono and
Takahashi’s collision model is similar to that presented in Section 2. For a single contact, single-dof slider on a
random rough surface, Ono and Iida [22] studied the bouncing frequencies and related the roughness to
bounce-free sliding and low wear. Their numerical simulations agree with the closed-form solution of Eq. (40).
A higher slider load (i.e., force F), a smaller slider mass (i.e., m), a higher contact damping (i.e., a smaller
coefficient involving restitution �), and a smoother disk (i.e., a smaller sawtooth angle x) increased the critical
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J. Slavič et al. / Journal of Sound and Vibration 306 (2007) 732–750748
frequency. Ono and Iida’s [22] experiment of a spherical glass slider running against a rotating hard disk
qualitatively agrees with their numerical model.

Fig. 10 of Ono and Iida [22] measures the effects of the applied slider load on the vibration frequency. As
predicted by Eq. (40), the frequency was found to be linearly related to the slider load [22].

Slider dynamics has been applied to brakes. Due to the interaction of two flexible bodies, the contact-
induced vibrations are usually found close to the natural frequencies of the coupled system. Giannini et al. [45]
attributed their measured linear increase of squeal noise with a normal load to a higher contact stiffness. Eq.
(40) gives an alternative explanation, with a more direct influence of the force. Furthermore, as predicted here,
Giannini et al. experimentally observed that the wear increases the squeal noise. By decreasing the angle of
attack (which can be explained by the angle jE , Eq. (22)) they measured a higher frequency of squeal.
Giannini et al. experimentally show both the in-plane (tangential) and the out-of-plane (normal) pad dynamics
during the squeal to be sinusoidal. They found the phase difference between the sinusoidals to be 90�. We view
this as evidence that the full-body motion studied here influences the squeal. As predicted by Eq. (40),
Giannini et al. found the sliding speed increased the vibration amplitudes (i.e., the sliding speed, vs).

7. Summary and conclusions

We studied roughness-induced vibrations using theory and experiment. Usually, roughness effects are included via
different variations of the friction law, which can result in distinct vibrations. Frequently, the studied stiffness effects
of the slider system can also result in distinct vibrations. By using Poisson’s impact law and Coulomb’s friction law
on geometrically detailed contact surfaces of rigid bodies, roughness effects were directly included into a closed-form
solution resulting in distinct vibrations. This finding is quite surprising. Also, experimentally in this article we found
that the sliding of bodies with a random roughness leads to distinct vibrations that increase with wear.

Closed-form and numerical solutions, including Eq. (41) below, agree with the experiments.
From our study we can conclude that:
(1)
 Random roughness can induce vibrations with distinct and predictable center frequencies.

(2)
 The wear-in of a slider narrows the amplitude spectral peaks and increases the peak height.

(3)
 The frequency of the vibrations induced by a slider sliding on an idealized sawtoothed surface, Eq. (40),

f m ¼
1

2

F

2mvs tan x
1� �

1þ �

1þ k2
l þ 12k2

r

1þ k2
l

(41)

involves roughness (via the sawtooth angle, x), the slider load, F, the slider mass, m, the coefficient of
restitution, �, the sliding speed, vs, the slider height-to-width ratio, kl ¼ l=w, and kr ¼ r=w. The width, w, of
the slider has no direct influence.
(4)
 The phenomena observed on hard-disk drives [22] and car brakes [45] could be explained by the theory
presented in this article.
(5)
 The amplitudes of the roughness-induced vibrations decrease with high slider loads or a small slider mass.
The center frequency of the amplitude spectra peak increases.
(6)
 Roughness-induced vibrations can be important when the bouncing amplitude is several times higher than
the roughness heights.
Possible applications include the following: hard-disk drives, millimeter- and micrometer-sized micro-electro-
mechanical systems (MEMS), and brakes at low braking force. Especially for small systems the surfaces and
defects are pronounced, and the roughness could induce vibrations [46,47].
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[31] J. Slavič, M. Boltežar, Nonlinearity and non-smoothness in multibody dynamics: application to woodpecker toy, Journal of

Mechanical Engineering Science 220 (3) (2006) 285–296.
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